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Movement requires effective relay of
commands from the CNS to muscles at
neuromuscular junctions (NMJs). To
form NMJs, developing motor neuron ax-
ons exit the spinal cord and navigate
through a complex landscape to align with
prepatterned AChRs on target muscle fi-
bers (Yang et al, 2001). Coordinated
communication between motor axons
and target muscle fibers is required for
NMJ formation, but parsing the roles of
individual cell types forming this struc-
ture has been challenging because of ex-
tensive cell-cell interactions. Previous
work has led to two contrasting views of
NM] formation: a “neurocentric” view
that favors neuron-induced initiation,
based on observations that agrin released
by motor neurons drives clustering of
AChRs in muscle; and a “myocentric”
view in favor of muscle-induced initia-
tion, which hinges on evidence that AChR
clustering occurs even when motor neu-
rons are genetically ablated (Lin et al,
2008). While these views seek to define
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the cell type that initiates NMJ formation,
ultimately, neither neuronal nor muscle
signals alone are sufficient for NMJ for-
mation. Instead, individual components
may direct aspects supported by recipro-
cal signaling between each cell type in-
volved (Darabid et al., 2014).

Increasing evidence suggests that
Schwann cells (SCs), the myelinating cell
type of the PNS, also serve in an initiative
role in NM]J formation. In models of genetic
SC ablation, motor axons become destabi-
lized and degenerate at the muscle surface
without forming synapses (Riethmacher et
al,, 1997; Lin et al., 2000; Wolpowitz et al.,
2000). Furthermore, mature SCs induce
motor neuron arborization after axotomy
in rat spinal cord (Li and Raisman, 1994)
and help direct reinnervation of the appro-
priate target muscle (Madison et al., 2009).
As is the case with muscles and axons,
proper innervation or reinnervation re-
quires communication between SCs and ax-
ons (Luo et al., 2011). Key molecules that
regulate this communication are proteases.
For example, ectodomain shedding of Neu-
regulin-1 from axons promotes SC differen-
tiation through interaction with SC ErbB2/3
receptors (Corfas et al., 2004). Furthermore,
ectodomain shedding of proteases is essen-
tial for the generation of chemo-attractant
and -repulsant guidance cues that direct SC
and axon migration (Bonanomi and Pfaff,
2010; Parrinello et al., 2010; Wang et al.,
2013). Muscle cells are a critical source of
guidance cues, which highlights the inter-
play between the three cell types (Bonanomi
and Pfaff, 2010). Dissecting the roles of each

tissue type by genetic manipulation of these
complex signaling pathways is a useful strat-
egy for studying the roles of different tissues
during innervation.

In a recent paper, Matsumoto et al.
(2016) sought to unravel the function of
one developmentally essential protease,
damage-induced neuronal endopeptidase
(DINE), in axon arborization and NM]J
formation. DINE is expressed in cranial
and spinal motor neurons both embryon-
ically and after CNS injury. Previous stud-
ies showed that DINE knock-out (KO)
disrupts terminal arborizations of motor
neurons, reminiscent of the phenotype
seen after genetic ablation of SCs (Nagata
et al., 2010). To study DINE’s function,
the authors generated transgenic mice
that expressed mutated forms of DINE.
Specifically, they expressed wild-type
DINE (KO; Tg""), DINE lacking the pu-
tative protease motif (KO; Tg™"), or
DINE with a single amino acid change
within the putative protease motif (KO;
Tg"*"*V) in a DINE KO background. Us-
ing these mice, the group visualized motor
axons and AChRs of developing phrenic
nerve-diaphragm NM]Js.

Phrenic motor neurons of KO;Tg
and KO;TgE613V embryos failed to ro-
bustly innervate the diaphragm, whereas
those of KO; Tg"" mice were comparable
with WT at all evaluated embryonic time
points. Embryonic rescue of phrenic
nerve-diaphragm NM]Js in KO; Tg"?*
mice was sufficient for the mice to survive
and develop normally, even though the
rescue transgene was no longer expressed
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after P8. These results indicate that DINE
is required for initial nerve formation of
the NMJ, but it may not be necessary for
NM]J maintenance.

These experiments strongly suggest
that DINE functions as a protease in NM]J
formation, although the reduced proteo-
lytic activity of the DINE mutants was not
directly demonstrated. The location and
manipulation of the putative protease
motif were inferred by data on other pro-
teases in the same class as DINE rather
than through direct experimentation. Ex-
pression and purification of the mutant
DINE variants in heterologous cells fol-
lowed by the use of a universal protease
assay could assess reduced protease act-
ivity directly. Additionally, the effects of
genetic manipulation on other possible
functions of DINE were not considered. A
related protease, neprilysin, signals intra-
cellularly in addition to its extracellular
role as a protease, raising the possibility
that DINE has intracellular signaling roles
that could be altered in the DINE mutant
mice (Siepmann et al., 2010).

The manipulation of DINE activity by
Matsumoto et al. (2016) also caused
changes in SC morphology and differentia-
tion in DINE KO mice. SC nuclei appeared
rounded and disorganized compared with
the narrow and aligned SCs of controls.
While quantification of SCs around the ven-
tral nerve root revealed no changes in SC
proliferation, immature SCs showed a sig-
nificant decrease in expression of Oct-6, a
transcription factor necessary for immature
SCs to become mature myelinating cells
(Jaegle and Meijer, 1998). This decrease sug-
gests that SCs stall at an immature stage of
development in KO mice. These data are
congruous with other data relating pro-
teases to proper SC maturation. For exam-
ple, proteolytic cleavage of promyelinating
proteins, such as Neuregulin-1, by the neu-
ronal proteases, BACE1 and ADAM10, has
been shown to facilitate myelination (Luo et
al., 2011).

To directly assess the DINE depen-
dence of axon-SC interactions without
the confounds of other tissue types and
signaling factors present in vivo, Matsu-
moto et al. (2016) cocultured motor neu-
rons from DINE KO and KO;Tg™" mice
or controls with SCs. A significant pro-
portion of SCs failed to align with DINE
KO and KO;Tg™"" axons compared with
controls. Unaligned SCs had a rounded
appearance reminiscent of the aberrant
SC phenotypes seen in vivo. However, be-
cause P2 rat SCs rather than embryonic
mouse SCs were used for the in vitro
studies, the applicability of the observed

misalignment is difficult to interpret.
Moreover, both the physiological rele-
vance of alignment and the justification
for its use as a read-out for proper inter-
action are weakened by the low frequency
of alignment observed in SC-control axon
cultures (~25%). A different read-out for
proper SC-axon interaction, such as onset
of myelin gene expression, expression of
genes associated with differentiation (e.g.,
Oct-6), or immunofluorescence against
N-cadherin, which forms SC-axon junc-
tions, could be more informative (Wan-
ner and Wood, 2002).

Because the endogenous substrates of
DINE are unknown, several a priori hy-
potheses can be made about how DINE
functions in NM]J formation. For this, it is
useful to use the conceptual framework
of initiators introduced previously. A
neurocentric view might posit that DINE
protease reorganizes the extracellular en-
vironment allowing axon terminals to ex-
tend toward their targets. This does not
fully explain, however, why axons of the
DINE mutants extend appropriately th-
rough the embryonic mesenchyme but
fail to continue arborizing when nearing
their target. Failure of arborization sug-
gests that loss of DINE may render axons
unable to interact with a critical partner at
this environmental boundary.

Furthermore, a myocentric view might
suggest that DINE, although produced by
neurons, cleaves attractive or repulsive
cues secreted by muscles to direct proper
targeting. Previous work supports the hy-
pothesis that properties of muscle groups
determine the degree to which neuronal
DINE is required for proper innervation.
Matsumoto et al. (2016) demonstrated
differential innervation of the diaphragm
compared with the latissimus dorsi in KO;
Tg""*V mice. They suggested that this
may have resulted from failure of the
point mutation to abolish protease activ-
ity. Yet innervation to diaphragm muscles
in KO;Tg""*V was equally diminished as
in DINE KO mice, suggesting a greater
DINE requirement for the diaphragm
over the latissimus dorsi. A recent analysis
of differential muscle innervation in the
DINE KO showed that DINE KO more
severely affects small, distal muscles, such
as those of the foot compared with large,
proximal muscle (Nagata et al., 2016).
Similar differential effects between muscle
groups are seen in human patients with
distal arthrogryposis Type 5, which is
caused by mutations in ECEL1, the hu-
man ortholog of DINE. Those afflicted fail
to form proper innervation to distal limb
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skeletal muscles, resulting in limb con-
tractures and severe muscular atrophy.

Finally, in light of a growing body of ev-
idence supporting an initiating role for SCs
in innervation and reinnervation, we pro-
pose a new category within the framework
of understanding NM]J formation. In a
“Schwanncentric” view of the data provided
by Matsumoto et al. (2016), DINE may
cleave factor(s) required for SC adherence
and differentiation. When DINE is absent,
the resultant lack of mature SCs available to
support an axon as it reaches its target may
impair axon arborization. Previous work,
including SC ablation experiments and sup-
plying SCs in nerve injury models, have sup-
ported the hypothesis that SCs induce axon
arborization (Li and Raisman, 1994; Madi-
son et al., 2009). The data of Matsumoto et
al. (2016) enrich the standing hypothesis by
raising the possibility that neuronal DINE
supports SC maturation, and reciprocally,
SCs may then induce axon arborization. It
follows that there may be clinical merit in
investigating whether targeting SC matura-
tion in ECEL1/DINE mutants suppresses
the innervation defect.

Because DINE has potential effects on
these various tissue types, a mechanistic un-
derstanding will require identification of
DINE substrate(s). Neurocentric, myo-
centric, and Schwanncentric views of
NMJ formation emphasize one cell type’s
importance to the process. Deconstructing
the roles of each of these cell types is impor-
tant because it helps define scientific models
and may direct therapeutic strategies for spi-
nal cord injury and congenital NM]J defects.
Like a falling row of dominos, understand-
ing how each player signals to the next may
allow us to therapeutically target the next
domino if one domino, such as DINE, is ab-
sent from the lineup.
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